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Contact manifolds

Let M be a smooth manifold of dimension 2n + 1.

A 2n-dimensional distribution ξ ⊆ TM is a smooth choice of a
2n-dim linear subspace in each tangent space TxM,

ξ is called a contact distribution if it has the following
property: if α ∈ Ω1(M) is such that ξ = kerα, then
α ∧ (dα)n 6= 0 everywhere (i.e. it is a volume form),

such a one-form α is called a contact form and (M, ξ) is
called a contact manifold.

Example: the unit sphere S2n+1 ⊆ R2n+2 = Cn+1

– the standard contact structure ξstd = TS2n+1 ∩ i(TS2n+1)
(”complex tangencies”)
– if (x1, y1, . . . , xn+1, yn+1) are the euclidean coordinates on R2n+1,
then a contact form is

αstd =
n+1∑
j=1

(xjdyj − yjdxj)|TS2n+1 .
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Contact transformation groups

Let (M, ξ = ker α) be a contact manifold.

the group of contactomorphisms

Cont(M, ξ) = {f ∈ Diff(M) |Tf (ξ) = ξ} =

= {f ∈ Diff(M) | f ∗α = λ · α for some

λ ∈ C∞(M) everywhere nonzero},

given a contact form α, the group of strict
contactomorphisms Cont(M,α) = {f ∈ Diff(M) | f ∗α = α},
Cont(M,α) ( Cont(M, ξ), a proper subgroup.

These are infinite-dimensional Lie groups.
Goal: To understand geometry and topology of Cont(M, ξ) –
hard! But Cont(M,α) seems to be easier to handle.

I study how (M, ξ = ker α) can fibre over other manifolds in a
(strictly) contact way.
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Contact fibre bundles

Let (M, ξ = ker α) be a closed contact manifold.

A fibre bundle

M
i−→ E

q−→ B (1)

is called

contact if there is a nowhere vanishing β ∈ Ω1(E ) which
restricts to a contact form in each fibre, i.e. ker (i∗β) = ξ,

strictly contact if i∗β = α.

Example: The Hopf fibration S3 → S7 → S4 with α = αstd on S3

and β = αstd on S7 is a non-trivial strictly contact fibre bundle.

The contact frame bundle of (1) is a fibre bundle CFrE → B
with fibre CFrEb = Diff((M, α), (Mb, α)), where b ∈ B.

Cont(M,α) acts on CFrE from the right by composition of
mappings and this action is free and transitive on fibres, so
CFrE → B is a principal Cont(M, α)-bundle ...
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Principal bundles and characteristic classes

Let G be a Lie group. A principal G -bundle is a fibre bundle
P → B together with a right action of G on P which is free
and transitive on fibres. In particular, the typical fibre is
diffeomorphic to G itself.

A characteristic class of principal G -bundles is an assignment

(P → B) 7→ χ(P) ∈ H∗(B)

which is natural with respect to morphisms of G -bundles.

Remark: Characteristic classes of principal G -bundles
are in 1-1 correspondence with elements of H∗(BG ), the
cohomology ring of the classifying space BG of the group G .

Goal: describe H∗(BCont(M, α)) – characteristic classes for
principal Cont(M,α)-bundles / strictly contact fibre bundles with
typical fibre (M, α)
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Chern-Weil theory

Let G → P → B a be principal G -bundle, g = Lie G . We need

a principal connection form θ : TP → g – a linear isomorphism
on fibres, equivariant: θ(X · g) = (Adg−1)∗θ(X ),

the curvature form dθ : Λ2TP → g of θ – a two-form on P
with values in g,

an invariant polynomial on g, i.e. a symmetric k-linear form
R : g× . . .× g → R that is Ad-invariant:
R(Adg (x1), . . . ,Adg (xk)) = R(x1, . . . , xk).

Then

Rdθ : Λ2TP × . . .× Λ2TP
dθ×...×dθ−−−−−−→ g× . . .× g

R−→ R

is a 2k-form on P, which descends to a closed 2k-form R̃dθ on B.
Its de Rham cohomology class χR(P) := [R̃dθ] ∈ H2k

deR(B; R) is
independent of the choice of the connection θ and so the
assignment ”(P → B) 7→ χR(P)” defines a characteristic class.
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Two examples

Example

1 Let G = GL(n, R), g = Mat(n; R). Consider the invariant
polynomials Rk(A1, . . . Ak) = tr(A1 · . . . · Ak), k ∈ N.

Then
χRk

= 0 for k odd, while χr2k
is the k-th Pontryagin class.

2 Let G = Cont(M,α). Its Lie algebra is the algebra of vector
fields X : M → TM which satisfy LXα = 0. Applying α, we
get a function α(X ) : M → R.
For each k ∈ N we then have an invariant polynomial

Rk(X1, . . . ,Xk) =

∫
M

α(X1) · . . . · α(Xk)α ∧ (dα)n

defining characteristic classes χk ∈ H∗(BCont(M, α); R).

But Cont(M,α) is an infinite-dimensional Lie group and so one
has to be more careful with the theory, e.g. does there exist a
principal connection form?! Yes, it does, even a ”nice” one.
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What one can prove

A regular contact manifold is one with a nice S1-action
induced by a contact form α (the Reeb flow of α).

For
example, (S2n+1, αstd) is regular.

Theorem (OS): Let (M, ξ = ker α) be a closed connected regular
contact manifold and let ϕ : S1 → Cont(M,α) be the S1-action of
the Reeb flow of α. Then the induced map on the cohomology of
the classifying spaces

(Bϕ)∗ : H∗(BCont(M, α); R) → H∗(BS1; R) ∼= R[t]

is surjective.

Idea of proof: Start with a principal S1-bundle P → B and
construct the associated bundle E = P ×S1 M → B with fibre
(M, α). This will be a strictly contact bundle. Pull back the
contact classes χk(E ) to P → B and show that the pull-backs are
the powers e(P)k of the Euler class of P.
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