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Contact manifolds

Let M be a smooth manifold of dimension 2n + 1.

@ A 2n-dimensional distribution £ € TM is a smooth choice of a
2n-dim linear subspace in each tangent space T, M,
o ¢ is called a contact distribution if it has the following
property: if a € Q}(M) is such that & = ker , then
a A (da)™ # 0 everywhere (i.e. it is a volume form),
@ such a one-form « is called a contact form and (M, ¢) is
called a contact manifold.
Example: the unit sphere §2*+1 C R27+2 = ¢+l
— the standard contact structure g = TS2"TL N i(TS?7+1)
(" complex tangencies”)
—if (X1, Y1, -, Xnt1, Yni1) are the euclidean coordinates on R?"+1,
then a contact form is
n+1

Qstd = Z(de}/j — yjdx;)| rs2nt1.
j=1
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Contact transformation groups

Let (M, & = ker «) be a contact manifold.

@ the group of contactomorphisms

Cont(M,&) = {f € Diff (M) | Tf(¢) =&} =
= {f € Diff(M)| f*a = X\ - a for some
A € C*°(M) everywhere nonzero},

@ given a contact form «, the group of strict
contactomorphisms Cont(M, ) = {f € Diff(M) | f*a = a},
e Cont(M, ) C Cont(M, &), a proper subgroup.
These are infinite-dimensional Lie groups.
Goal: To understand geometry and topology of Cont(M,¢) —
hard! But Cont(M, ) seems to be easier to handle.

| study how (M, & = ker «) can fibre over other manifolds in a
(strictly) contact way.
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Contact fibre bundles

Let (M, & = ker «v) be a closed contact manifold. A fibre bundle
MLEYLB (1)

is called
e contact if there is a nowhere vanishing 3 € Q!(E) which
restricts to a contact form in each fibre, i.e. ker (i*3) = ¢,
@ strictly contact if i*( = a.

Example: The Hopf fibration S3 — S7 — S* with a = agq on S3
and 3 = agq on S is a non-trivial strictly contact fibre bundle.

@ The contact frame bundle of (1) is a fibre bundle CFrE — B
with fibre CFrEp, = Diff((M, o), (Mp, @)), where b € B.

Cont(M, «) acts on CFrE from the right by composition of
mappings and this action is free and transitive on fibres, so
CFrE — B is a principal Cont(M, a)-bundle ...
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Principal bundles and characteristic classes

@ Let G be a Lie group. A principal G-bundle is a fibre bundle
P — B together with a right action of G on P which is free
and transitive on fibres. In particular, the typical fibre is
diffeomorphic to G itself.

@ A characteristic class of principal G-bundles is an assignment
(P—B) — x(P)e H*B)

which is natural with respect to morphisms of G-bundles.

Remark: Characteristic classes of principal G-bundles

are in 1-1 correspondence with elements of H*(BG), the
cohomology ring of the classifying space BG of the group G.
Goal: describe H*(BCont(M, «)) — characteristic classes for
principal Cont(M, a)-bundles / strictly contact fibre bundles with
typical fibre (M, «)
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Chern-Weil theory

Let G — P — B a be principal G-bundle, g = Lie G. We need

@ a principal connection form #: TP — g — a linear isomorphism
on fibres, equivariant: (X - g) = (Adg-1)"0(X),

e the curvature form df: A>TP — g of § — a two-form on P
with values in g,

@ an invariant polynomial on g, i.e. a symmetric k-linear form
R:gx...xg— R that is Ad-invariant:
R(Adg(x1),...,Adg(xk)) = R(x1, ..., Xk).

Then

dox...xdf
T

Ryo: N2TP x ... x N2TP gx ... xg R

is a 2k-form on P, which descends to a closed 2k-form R’dg on B.
Its de Rham cohomology class xgr(P) := [Rag] € H3%:(B;R) is
independent of the choice of the connection 6 and so the
assignment " (P — B) — xgr(P)" defines a characteristic class.
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Example

@ Let G = GL(n,R), g = Mat(n; R). Consider the invariant
polynomials Ri(A1,...Ax) =tr(A1-...- Ak), k € N. Then
XR, = 0 for k odd, while x,, is the k-th Pontryagin class.

@ Let G = Cont(M, ). lts Lie algebra is the algebra of vector
fields X: M — TM which satisfy Lxa = 0. Applying o, we
get a function o(X): M — R.
For each k € N we then have an invariant polynomial

Rk(Xl, RN ,Xk) = /Ma(Xl) et Oz(Xk)Oé A (dOé)n

defining characteristic classes xx € H*(BCont(M, a); R).

But Cont(M, «) is an infinite-dimensional Lie group and so one
has to be more careful with the theory, e.g. does there exist a
principal connection form?! Yes, it does, even a "nice” one.
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What one can prove

o A regular contact manifold is one with a nice S-action
induced by a contact form « (the Reeb flow of «). For
example, (52" agyq) is regular.

Theorem (0OS): Let (M, & = ker a) be a closed connected regular
contact manifold and let ¢: ST — Cont(M, a) be the S'-action of
the Reeb flow of a. Then the induced map on the cohomology of
the classifying spaces

(Be)*: H*(BCont(M, a); R) — H*(BSY; R) = R[t]

is surjective.

Idea of proof: Start with a principal S-bundle P — B and
construct the associated bundle E = P xs1 M — B with fibre
(M, ). This will be a strictly contact bundle. Pull back the
contact classes xk(E) to P — B and show that the pull-backs are
the powers e(P)¥ of the Euler class of P.



